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Abstract
We derive the high-temperature expansion of the Helmholtz free energy of the quantum and
classical models for the Mn12-ac molecule in the presence of a skew magnetic field, including
the transverse term in the Hamiltonians, for T � 21 K. In this region of temperature, we show
that the transverse term can give a measurable contribution to the x component of the
magnetization. We obtain the specific heat per site of a powder sample of Mn12-ac under a
constant magnetic field. For strong skew magnetic fields (h/D > 1), the specific heat differs up
to 20% from its value of a crystal sample under purely longitudinal magnetic fields. Finally, we
obtain that in the limit T → ∞, the values of the classical and quantum specific heat differ; in
particular, for �h = �0 this difference is 0.96%.

1. Introduction

The Mn12-ac molecule is a classical example of a single-
magnetic molecule (SMM) that is expected to have nano-
magnetic behavior. It was chemically synthesized by Lis in
1980 [1]. Since then, molecular chemistry has achieved de-
signing new magnetic clusters that present nanomagnetic be-
havior [2]. The Mn12-ac molecule is described by a spin
Hamiltonian (S = 10) at the ground state. The properties of
the Mn12-ac cluster have been widely studied; in the 1980s and
1990s, its magnetic behavior at very low temperatures was de-
scribed by a term proportional to (S4+ + S4−) that breaks the
conservation of the spin z component [3, 4]. At temperatures
below 3 K it has been experimentally verified that the presence
of even and odd numbers of transitions in the hysteresis curve
cannot be explained by this non-conserving Sz term. In 2001
Chudnovsky and Garanin [5, 6] included the new transverse
term E(S2

x − S2
y) in the Hamiltonian of this system. This term

comes from dislocations in Mn12-ac crystals. Due to this dis-
tortion, an external longitudinal magnetic field acting on the
SMM induces the presence of a transverse component in the

4 Author to whom any correspondence should be addressed.

x direction [6]. Recently Su et al [7] used the S = 10 Hamilto-
nian, including the E-term, to numerically reproduce the num-
ber of steps in the low-temperature stepwise hysteresis curve
of Mn12-ac [8].

Another interesting point about the Mn12-ac molecule is
that, due to the high value of spin, it is likely to behave
classically.

In [9] Lascialfari et al affirm that the correlation effects
leading to the S = 10 ground state of the Mn12-ac happen
below room temperature. They consider the high-temperature
region of this SMM as T � 200 K; that makes the S =
10 Hamiltonian an interesting model to be studied at finite
temperature.

Although the thermodynamics of the S = 10 Hamiltonian
can be solved numerically for all temperatures, it would
be interesting to have a high-temperature expansion (β
expansion) of its Helmholtz free energy (HFE), as a function
of arbitrary values of the parameters, and in the presence of an
external magnetic field with longitudinal (hz) and transverse
(hx ) components. The expansions of the thermodynamical
functions derived from this analytic HFE would easily allow
fitting of the experimental data, including the effects due
to the transverse term. The β expansion of the HFE, as
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a function of the arbitrary values of the parameters of the
Hamiltonian, opens the possibility of determining suitable
ranges of values for such parameters so that some desirable
behavior is achieved, when designing new magnetic clusters.

The aim of this paper is fourfold: (i) to derive the
β expansion of the HFE of the quantum and the classical
models of the Mn12-ac molecule, including the transverse
term in the Hamiltonian, for arbitrary constant magnetic
field with hx and hz components; (ii) to check if the terms
in the Hamiltonian related to the stepwise low-temperature
hysteresis curve which gives a significant contribution to the
thermodynamical functions at T � 21 K; (iii) to calculate
the average specific heat per site of a powder sample of the
SMM that is uniformly distributed in the (x, z) plane; and
(iv) to verify if the thermodynamic behavior of the quantum
model of the SMM can be safely approximated by its classical
version. We calculate the β expansion of the HFE of the
quantum (S = 10) and the classical models of the Mn12-ac
up to order β18 and β19, respectively. In section 2 we adapt
the results of [10] to the one-site model and show that, for this
type of non-interacting Hamiltonian, we only need to calculate
the functions H (i)

1,1, where i ∈ {1, 2, . . . , n}, when calculating
the expansion of the HFE up to order βn . In section 3 we study
the thermodynamics of the Mn12-ac in the region of T � 21 K.
In section 3.1 we present the Hamiltonian under consideration
and the main features of the β expansion of the quantum and
the classical HFEs; in section 3.2 we verify the importance of
the C and E terms in the Hamiltonian to the magnetization
and the specific heat of the quantum model; in section 3.3 we
compare the specific heats of a powder sample and an SMM
crystal, under longitudinal magnetic field; and in section 3.4
we verify if the magnetization and specific heat per site of the
quantum model can be replaced by their respective classical
versions for T � 21 K, including the limit T → ∞. Section 4
presents our conclusions. The β expansions of the quantum
and classical models are extremely large expressions, but in
appendices A and B we present them up to order (Dβ)3 as
functions of the parameters of their respective Hamiltonians.

2. The β expansion of the HFE of the one-site model

In [10] Rojas et al present a closed relation for the coefficients
of the cumulant expansion of the HFE of any homogeneous
chain model subject to periodic space conditions and first-
neighbor interaction. The general form of the Hamiltonian is

H =
N∑

i=1

Hi,i+1, (1)

where N is the number of sites in the chain. In this section we
review the steps in [10] for calculating the β expansion of the
HFE, in the thermodynamical limit (N → ∞), of N homoge-
neously distributed non-interacting sites (Hi,i+1 ≡ Hi ).

The β expansion [11] of the thermodynamical limit of the
HFE for the model (1) is

W(β) = lim
N→∞ − 1

Nβ
ln[Z(β)]

= − 1

β
[ln(tr1(11)) + ln (1 + ξ(β))] , (2)

in which Z(β) is the partition function, β = 1
kT , k is the

Boltzmann constant and T is the absolute temperature. The
operator 1i is the identity operator of the i th site, with i =
1, 2, . . . , m +1, and tr1(11) corresponds to its trace, that is, the
Hilbert space dimension of each site in the chain; for a given
spin S we have tr1(11) = (2S + 1) [11].

The function ξ(β) is defined as

ξ(β) =
∞∑

n=0

1

(n + 1)!
∂n

∂λn

(
ϕ(λ)n+1

)∣∣∣∣
λ=1

(3)

in which the auxiliary function ϕ(β) is given by

ϕ(λ) =
∞∑

m=1

∞∑

n=m

(−β)n

λm
H (n)

1,m. (4)

The functions H (n)
1,m correspond to the ‘connected’ strings with

n operators Hi,i+1 so that m of them are distinct, that is,

H (n)

1,m =
n−m+1∑

{ni }
′′
〈 m∏

i=1

Hni
i,i+1

ni !
〉

g

. (5)

The notation
∑n

{ni }
′′ stands for the summation over the indices

ni = 1, . . . , n − m + 1, where i = 1, 2, . . . , m, but under the
restriction

∑m
i=1 ni = n. The index m satisfies the condition

1 � m � n. The g traces (generalized traces) are commuting
objects defined as

〈
Hn1

i1,i1+1Hn2
i2,i2+1 · · · Hnm

im ,im+1

〉
g
≡ n1! · · · nm !

n!
×

∑

P
〈P(Hn1

i1,i1+1, Hn2
i2,i2+1, . . . , Hnm

im ,im+1)〉, (6)

where
∑m

i=1 ni = n with ni 
= 0, i = 1, 2, . . . , m, and
the indices ik , k = 1 · · · m are all distinct. By definition,
〈P(Hn1

i1,i1+1, Hn2
i2,i2+1, . . . , Hnm

im ,im+1)〉 represents the normalized
trace of a distinct permutation P of the n operators inside
the parentheses, that is, traces of operators normalized by the
dimension of the Hilbert space they act upon. For instance

〈Hn1
12 Hn2

23 · · · Hnm
m,m+1〉 ≡ tr1,2,...,m+1

[
Hn1

12 Hn2
23 · · · Hnm

m,m+1

]

tr1(11) · tr2(12) · · · trm+1(1m+1)
.

(7)

We refer the reader to [10] for further details on this
approach.

The Hamiltonian (1) of a model of N non-interacting sites
is rewritten as

H =
N∑

i=1

Hi , (8)

with

[Hi, H j ] = 0, i, j = 1, 2, . . . , N; (9)

this is a particular case of the Hamiltonian (1). Consequently
the results (2)–(7) can be applied to the calculation of the HFE
for (8), independent of the particular way in which the N non-
interacting sites are spatially distributed. As a consequence of

2



J. Phys.: Condens. Matter 21 (2009) 026012 O Rojas et al

the previous commutation relation, we obtain that the g trace
and the normalized trace of operators turn out to be identical:

〈
Hn1

i1,i1+1Hn2
i2,i2+1 . . . Hnm

im ,im+1

〉
g

=
〈

m∏

j=1

Hn j

i j

〉

i1···im

. (10)

Substituting result (10) in relation (5), we have

H (n)
1,m =

n−m+1∑

{ni }
′′
〈

m∏

i=1

Hni
i

ni !

〉
=

n∑

{ni }
′′
[

m∏

i=1

H (ni)
1,1

]
(11)

and H (ni)
1,1 = 1

ni !
tr1(H

ni
1 )

tr1(11)
.

In order to derive the β expansion of the HFE of both
quantum and classical models in the thermodynamical limit,
it suffices to calculate the functions H (n)

1,1 , n = 1, 2, 3, . . ., of
the respective model. The result (11) is also valid for classical
models.

3. Thermodynamics of the Mn12-ac at T � 21 K

3.1. The Hamiltonian of the Mn12-ac

In order to reproduce the stepwise magnetic hysteresis curve
of the Mn12-ac molecular clusters at low temperature [12],
Chudnovsky and Garanin [5, 6] proposed that local rotations
of the anisotropy axes due to dislocations are responsible for
odd tunneling resonances. This static deformation generates a
transverse component of the magnetic field even if the cluster
is in the presence of an external longitudinal magnetic field [6].

The one-site Hamiltonian that fits the experimental data
of the Mn12-ac molecular clusters, in the presence of a skew
magnetic field, at the i th site is [13]

Hi = −D(Si
z)

2 − B(Si
z)

4 − C[(Si
+)4 + (Si

−)4]
+ E[(Si

x)
2 − (Si

y)
2] − hx Si

x − hz Si
z, (12)

where Si
x , Si

y and Si
z are the spin operators for S = 10,

at the i th site; for the creation and destruction operators we
have5S± ≡ 1√

2
(Sx ± iSy). The total Hamiltonian is H =

∑N
i Hi , where N is the number of Mn12 molecules in the

medium (we take N → ∞ in the thermodynamical limit). The
constant external magnetic field has components hx and hz ,
the direction z being the easy axis. We introduce a transverse
component of the magnetic field in the x direction in order
to mimic the transverse magnetic field due to dislocations in
Mn12-ac crystals. The terms proportional to the parameters C
and E in (12) do not commute with Sz and are responsible
for transitions among its eigenstates. The term proportional
to E appears due to local rotations of the easy axis [5, 6].
We can write the components of the external magnetic field,
constrained to the xz plane without loss of generality, as
functions of the angle θ between the constant external magnetic
field and the easy axis (z axis):

hx = h sin(θ) and hz = h cos(θ), (13)

where θ ∈ [0, 2π]. The magnetic field has norm h (h = |�h|).
5 The definition of these operators differs from that used in previous articles
on the subject. In Hamiltonian (12) we have: C = −4 CMertes.

Using the results of section 2, we calculate the high-
temperature expansion of the HFE of Hamiltonian (12), for
arbitrary values of the parameters, up to order (Dβ)18 for the
quantum model (see equation (A.1)) and up to order (Dβ)19

for the classical model (see equation (B.4)). The parameter
(Dβ) is dimensionless. In appendices A and B we present
these results up to order (Dβ)3. Regarding these expressions,
we observe that:

(1) each coefficient of (Dβ)i , i = 1, 2, . . . , n, in the
expansions (A.1) (n = 18) and (B.4) (n = 19) is exact;

(2) the HFE of both models are even functions of hx and hz ;
(3) if E = 0 (i.e. no distortion) and hx = 0 (no transverse

component of the magnetic field) the HFE (either classical
or quantum) is an even function of the parameter C ,
whereas for E 
= 0 or hy 
= 0 this parity is destroyed;

(4) the zero-field static magnetic susceptibility tensor has non-
null diagonal elements χxx (β) and χzz(β) for the quantum
and classical models;

(5) the Mx component of the magnetization vector is an
even function of hz and an odd function of hx ; the Mz

component is an even function of hx and an odd function
of hz .

In order to study the thermodynamics of the Mn12-ac
molecular cluster for T � 21 K, we use the values of [13]
for the parameters in Hamiltonian (12):

D

k
= +0.548(3) K;

B

k
= 1.173(4) 10−3 K and

C

k
= ∓1.16 10−4 K,

(14)
k being the Boltzmann constant, and replace them in the
expansions (A.1) and (B.4).

More recently, Su, Shen and Tao [7] proposed a Gaussian
distribution

P(E) = 1√
2π

1

σ
e

−(E−E0 )2

2σ2 , (15)

for the parameter E ∈ (−∞,∞).
The numerical analysis performed in [7] for the

experimental values (14) of parameters gives

E0

k
= +0.018 K and

σ

k
= 0.006 K. (16)

3.2. The contribution of the non-diagonal terms at T � 21 K

From the β expansions of the HFE of the quantum (see
equation (A.1)) and the classical (see equation (B.4)) versions
of Hamiltonian (12), it is simple to calculate the high-
temperature expansion of some thermodynamical functions
since they are functions of arbitrary values of the parameters
in the Hamiltonian. We will restrict our discussion to the
impact of the non-diagonal terms on the magnetization and
on the specific heat per site for several values of the angle
θ , and for T � 21 K. Instead of considering a definite
value for the parameter E , we will average over the Gaussian
distribution (15).

3
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In what follows we present the steps to calculating the
contribution of the distortion term to any thermodynamical
function G. The β expansion of G in the dimensionless
parameter (Dβ) can be written as

G(D, B, C, E, hx , hz; β)

= (D)l0
n0∑

n=0

gn(B̃, C̃, Ẽ, h̃x , h̃z)(Dβ)n, (17)

where B̃ ≡ B/D, C̃ ≡ C/D, Ẽ ≡ E/D, h̃x ≡ hx/D
and h̃z ≡ hz/D. The values of n0 and l0 depend on the
particular thermodynamical function under consideration. The
coefficients gn(B̃, C̃, Ẽ, h̃x , h̃z) are obtained from a suitable
derivative of the high-temperature expansion of either the
quantum or the classical HFE—equations (A.1) and (B.4),
respectively.

The average of G over E is

〈G〉E ≡
∫ ∞

−∞
dE P(E)G(D, B, C, E, hx , hz; β), (18)

where P(E) is an experimental probability distribution of the
parameter E . The expansion (17) is a power function in E . For
any distribution P(E), it is simple to use algebraic software to
calculate the integral on the rhs of equation (18). In the present
paper, we use the Gaussian distribution (15) for P(E).

Substituting expressions (15) and (17) in relation (18), we
obtain the high-temperature expansion of 〈G〉E :

〈G〉E = (D)l0

√
2π

n0∑

n=0

[
(Dβ)n

σ̃

×
∫ ∞

−∞
dẼ gn(B̃, C̃, Ẽ, h̃x , h̃z) e

−(Ẽ−Ẽ0)2

2σ̃2

]
, (19)

where Ẽ0 ≡ E0/D and σ̃ ≡ σ/D.
We begin by studying the averaged components of the

magnetization 〈Mi 〉E = − ∂〈W 〉E

∂hi
, i ∈ {x, z}, where 〈W 〉E

is the Gaussian average expansion when (A.1) or (B.4) are
substituted in equation (19) with the set of parameters (14)
and (16).

From the manipulation of the β expansions of the quantum
and classical 〈Mx〉E we verify that the convergence region of
these expansions decreases as θ vanishes (the limit of a purely
longitudinal magnetic field). In order to determine the range of
validity of the β expansion of Mx , as a function of (Dβ), we
impose that in the interval θ ∈ [π/3, π/2], the contribution of
the term of order (Dβ)18 in this expansion is �0.3%.

We remind that the term proportional to E in
Hamiltonian (12) is introduced to explain the stepwise
magnetic hysteresis curve at very low temperatures [5, 6].
Figure 1(a) shows the contribution of this term to the
thermodynamics of the SMM for T � 17.8 K by plotting the
per cent difference of the quantum Mx in its presence (E 
= 0)
and in its absence (E = 0), as a function of (Dβ) and θ , for
Dβ ∈ [0, 0.031], θ ∈ {π/3, π/4, π/2} at h/D = 3.7. The per
cent difference is defined as

�EMx(β) ≡ 100%

×
∣∣∣∣
〈Mx(E0, σ ; β)〉E − Mx(E = 0; β)

Mx(E = 0; β)

∣∣∣∣ . (20)

Figure 1. The per cent difference �EMx (%) at θ = π/3 (solid line),
π/4 (dashed line) and π/2 (dotted–dashed line). Panel (a) shows
�EMx versus (Dβ) in which (Dβ) ∈ [0, 0.031] (i.e. T � 18.1 K)
and at h/D = 3.7; in (b) this per cent difference is plotted as a
function of h/D, in which h/D ∈ [0, 3.7] and T = 18.9 K.

In figure 1, we use the set of parameters (14) and (16) for
the constants in the Hamiltonian (12). In writing equation (20),
we calculate the average (19) over all possible values of E .

In figure 1(b) this difference (20) is plotted as a function
of h/D for θ ∈ {π/3, π/4, π/2} at T = 18.9 K. From the
analysis of these curves, we verify that �EMx can be larger
than 2% even in the region of T � 17.8 K.

The unexpected behavior in figure 1(b) is that the per cent
difference (20) is a decreasing function of h/D.

Depending on the experimental precision of data about
the x component of the magnetization, the contribution of the
distortion term proportional to E must be taken into account
in calculating Mx(T ) for temperatures up to 32 K, since
�EMx(β) is larger than 2%.

The term proportional to the parameter C in (12) is also
responsible for the stepwise magnetic hysteresis curve at low
temperatures (we call it the C term). In order to verify if this
term gives a significant contribution to the quantum Mx , we
define the per cent difference �CMx(β):

�CMx(β) ≡ 100%

×
∣∣∣∣
〈Mx(E0, σ, C; β)〉E − 〈Mx(E0, σ, C = 0; β)〉E

〈Mx(E0, σ, C = 0; β)〉E

∣∣∣∣.

(21)

We obtain that the highest value of (21), for T � 18.3 K
and for h/D ∈ [0, 3.7], occurs when the external magnetic
field is almost aligned with the easy axis z (θ 
 1) and the
magnetic field is near zero. Under those conditions we have
�CMx � 0.025%.

We point out that [6] shows that, in the presence of
a longitudinal magnetic field, the dislocations in the crystal
induce a transverse x component of the magnetic field.

For the z component of the magnetization of the quantum
model of SMM, we define per cent differences similar to (20)
and (21) in order to verify the contributions of the E and C

4
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terms to 〈Mz〉E for T � 18.3 K. Again, for h/D 
= 0, the
highest contribution of the E term happens for θ → π/2,
although 〈Mz(θ = π/2)〉E = 0. For (Dβ) ∈ [0, 0.03] and
h/D ∈ (0, 3.7] we obtain that �EMz(β) � 0.014% whereas
�CMz(β) � 0.003%.

In the region of temperature T � 18.3 K, the xz element
of the magnetic susceptibility tensor (χi, j = − ∂2W

∂hi ∂h j
, where

i, j ∈ {x, z}) is at least one order of magnitude smaller than
the xx and zz elements of this tensor for θ ∈ [0, π/2] and
h/D ∈ [0, 3.7]. In these intervals, the value of χzz is at least
twice as large as the value of χxx . We point out that χxx and
χzz are non-null at θ = 0 and θ = π/2, respectively.

The effective Curie constant of χzz (that is, Czz ≡ T χzz),
T being the absolute temperature, shows the same behavior as
shown in figure 1 of [9] for h/D = 0.245. From the high-
temperature expansion of χzz we obtain that χzz = 40.9 at
T = 20 K and that χzz = 24.2 at T = 100 K; consequently, the
same decrease of χzz by almost a factor of 2 is exhibited, when
the temperature increases from 20 to 100 K, as mentioned
in [9].

Although the value of χxz is one order of magnitude
lower than that of the diagonal elements of the magnetic
susceptibility tensor, defining a per cent difference analogous
to equation (20) yields �Eχxz(β) to be larger than 4% for
θ ∼ π/2, T � 21.9 K and h/D 
= 0.

Similarly to the z component of the magnetization, the
per cent difference of the specific heat per site C(β) (C(β) =
−β2 ∂2(βW )

∂β2 ) of the quantum models (with and without crystal
dislocations) for (Dβ) ∈ [0, 0.026] (T � 21.1 K) and h/D ∈
[0, 3.0] is smaller than 0.02%. (An analogous definition to
equation (20) has been applied for the specific heat.) For a
fixed norm h of the external magnetic field, the highest value
of this per cent difference occurs at θ = π/2. We also verify
the contribution of the C term in (12) to the specific heat by
defining a per cent difference analogous to (21). For (Dβ) ∈
[0, 0.026] and h/D ∈ [0, 3.0], this difference is � 0.02%, and
for T � 46 K and h/D ∈ [0, 3.0], this difference is almost
insensitive to the value of the angle θ .

A good approximation for the HFE of the quantum and
classical versions of the Mn12-ac crystals for T � 46 K,
except for the calculation of the transverse component of the
magnetization, is obtained by substituting the parameters (14)
in expansions (A.1) and (B.4) and taking C = 0 and E = 0.
The expansion of the HFE of the quantum model of Mn12-ac,
up to order O(T −3), is

Wquant(T )/k = −ln(21)T − 22.923 391 33

+
(

−55 h̄2
z

3
− 231.632 4426 − 55 h̄2

x

3

)
1

T

+ (−1234.567 484 + 175.658 2714 h̄2
x

− 351.316 5430 h̄2
z )

1

T 2
+

(
−2651.710 866 h̄2

z

+ 1384.084 800 h̄2
x + 6426.167 002 + 2431

36
h̄4

x

+ 2431

18
h̄2

z h̄2
x + 2431

36
h̄4

z

)
1

T 3
+ O

(
1

T 4

)
, (22)

and of its classical version, is

Wclass(T )/k = −ln(4 π)T − 22.931 993 33

+
(

−233.845 9236 − 55 h̄2
x

3
− 55 h̄2

z

3

)
1

T

+ (177.089 4540 h̄2
x − 1296.587 019

− 354.178 9079 h̄2
z )

1

T 2

+
(

−2777.549 329 h̄2
z + 1388.774 664 h̄2

x

+ 5761.517 828 + 605

9
h̄4

x

+ 1210

9
h̄2

z h̄2
x + 605

9
h̄4

z

)
1

T 3
+ O

(
1

T 4

)
. (23)

In equations (22) and (23), we use the notation: h̄x ≡ hx
k

and h̄x ≡ hx
k . The terms in expansions (22) and (23) are in K

(kelvin).
We should say a word of caution about comparing

the thermodynamical functions derived from the HFEs (22)
and (23) (and the results in appendices A and B) with the
experimental data. At the intermediate range of temperature
where our results are valid, other factors like the thermal
population of excited spin states can also influence the
thermodynamics of the Mn12-ac crystals.

3.3. The specific heat in a powder sample of Mn12-ac

In a powder sample of Mn12-ac molecules, the angle θ between
the easy axis (z axis) and the constant external magnetic field �h
(constrained to the xz plane, without loss of generality) varies
in the interval [0, 2π]. The high-temperature expansion of the
quantum and classical specific heat per site C(h, θ; β) up to
order (Dβ)19 and (Dβ)20 are derived from expansions (A.1)
and (B.4), respectively. This thermodynamical function is even
in hx and hz . The average specific heat (with respect to the
orientation of the chain to the external constant magnetic field)
of the powder sample of the Mn12-ac is given by

C̄(β) =
∫ π/2

0
C(h, θ; β) P(θ) dθ, (24)

where P(θ) dθ is the probability of finding an angle between θ

and θ + dθ between the easy axis of the SMM and the external
magnetic field. This distribution of probability depends on
the experimental arrangement. Since our expansions of the
quantum and classical specific heat are continuous functions of
θ , they can be used in the calculation of C̄(β) for any particular
distribution P(θ).

Assuming a homogeneous probability distribution of
chain orientations P(θ) = 2

π
, for θ ∈ [0, π/2] we calculate

C̄(β). We call Clong(β) the specific heat per site of a chain of
Mn12-ac molecules under the action of an external longitudinal
magnetic field. In order to investigate the behavior of this
averaged thermodynamical function in a powder sample, we
use the per cent difference

�C̄(β) ≡ 100% ×
∣∣∣∣
C̄(β) − Clong(β)

C̄long(β)

∣∣∣∣ . (25)

5
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Figure 2. The per cent difference of the specific heat, averaged over
all orientations of the magnetic field and the specific heat for a
longitudinal (parallel to the easy axis) external magnetic field of the
chain, as a function of (Dβ), plotted for h = 1 (solid line), h = 2
(dashed line) and h = 3.7 (dotted–dashed line).

Figure 2 shows �C̄ versus (Dβ) at h/D = 1, 2, and 3.7.
We obtain that the per cent difference between the specific
heat function in a powder sample and that of a crystal, in
the presence of a longitudinal magnetic field, is an increasing
function of the norm of the external magnetic field, and it can
be as high as 20% for h/D = 3.7 and T � 21.1 K. We point
out that the contributions of terms of order (Dβ)19 in the β

expansions of the longitudinal and the average specific heat to
the values of these functions, in the interval (Dβ) ∈ [0, 0.025],
is smaller than 0.17% for h/D = 1, 0.16% for h/D = 2 and
2.8% for h/D = 3.7.

3.4. Comparison of the quantum and classical models of the
Mn12-ac

The S = 10 Hamiltonian (12) is likely to exhibit classical
behavior, in view of its high spin value. In its classical version,
we consider a spin with norm equal to

√
110 and the angle θ

between the z component of the classical spin and the easy axis
varying continuously in the interval [0, π]. In appendix B we
present the main steps to derive the HFE of the classical model
and its expansion up to order (Dβ)3. The high-temperature
expansion of the classical specific heat per site is obtained
from (B.4).

In order to compare the specific heat of the quantum
(Cquant(β)) and the classical (Cclass(β)) models, including the
C and E terms in Hamiltonian (12), we define

�C,QC(β) ≡ 100% ×
∣∣∣∣
Cclass(β) − Cquant(β)

Cquant(β)

∣∣∣∣ . (26)

In figure 3 we present the curve �C,QC(β) × (Dβ) at
h/D = 0 for Dβ ∈ [0, 0.025] (T � 21.1 K). The interval in
the variable (Dβ) is chosen such that the terms of order (Dβ)19

in Cclass and Cquant contribute by less than 0.13% to the values
of these functions at h/D = 0 and (Dβ) ∈ [0, 0.025]. This per
cent difference �C,QC(β) goes up to 4.84% within this interval
of temperature. From figure 3 we verify that Cclass 
= Cquant at

Figure 3. The per cent difference between the classical and the
quantum specific heat as a function of (Dβ) at h/D = 0.

β = 0 (T → ∞) and h/D = 0 (�C,Q C(0) = 0.96%). For
h/D 
= 0, we have

lim
β→0

�C,QC(β) = 0.444

0.464 + 0.110 × 10−1
(

h
D

)2
, (27)

which shows that the quantum and classical models have the
same value for the specific heat per site at β = 0 only in the
presence of a very strong external magnetic field.

For T � 21.1 K, h/D ∈ [0, 3], and θ ∈ [0, π/2]
the per cent difference of the quantum and classical x and z
components of the magnetization is smaller than 1.4%. At β =
0 the value of the quantum and classical 〈Mx(β)〉E/〈Mz(β)〉E

is equal.

4. Conclusions

The S = 10 Hamiltonian has been used to fit the experimental
data of the Mn12-ac molecule at finite temperatures. In 2001
Chudnovsky and Garanin [5, 6] included a transverse term in
the Hamiltonian of this SMM in order to explain the even and
odd number of magnetic transitions presented in the hysteresis
curve for T < 3 K. We obtain the β expansion of the HFE of
the quantum and classical models of the Mn12-ac up to order
(Dβ)18 and (Dβ)19, respectively. The range of validity of
each β expansion depends on the particular thermodynamical
function, but we can say that they are all valid at least for
T � 21 K. (The expansion of the magnetization is valid for
T � 17.8 K.) We show that in the interval 17.8 K � T � 32 K
the presence of the transverse term in the Hamiltonian (12) can
give a contribution larger than 2% to the x component of the
magnetization, whereas the contribution of the C term is much
smaller (�0.028%).

The contributions of the C and E terms to the z component
of the magnetization and the specific heat per site are �0.014%
and �0.02%, respectively.

We obtain that the non-diagonal element of the magnetic
susceptibility tensor (χxz ) is one order of magnitude lower than
χxx and χzz . For T � 21.9 K we have χxx < χzz . We also
have a qualitative agreement with the curves χzz(T ) and the

6
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effective Curie constant versus T for T � 21 K, as shown in
figure 1 of [9].

In the regime of strong magnetic fields (h/D > 1), the
average specific heat (24) can be 20% larger than the specific
heat in the presence of a longitudinal magnetic field at T ∼
21.1 K and h/D = 3.7.

Finally we obtain that the magnetization of the S = 10
Hamiltonian can be replaced by its classical version with a
precision smaller than 1.4%, whereas the specific heat per
site does not agree with the classical value even at β = 0
(T → ∞). The per cent difference between the quantum and
classical specific heat goes up to 4.84% for T � 21.9 K and
h/D = 0.
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Appendix A. The high-temperature expansion of the
quantum S = 10 model

By applying the results of section 2 to the S = 10 Hamiltonian
(12), for arbitrary values of the parameters D, B , C , E , hx and
hz , we obtain the expansion of the HFE of the quantum model
up to order (Dβ)18. Up to order (Dβ)3, it is6

Wquant(Dβ) = −ln(21) (Dβ)−1 +
(

−110

3
− 7238 B̃

3

)

+
(

−55 h̃2
z

3
− 24 515 700 C̃2

7
− 55 h̃2

x

3
− 6297 170 B̃

63

− 45 690 535 B̃2

9
− 4807 Ẽ2

3
− 4807

9

)
(Dβ)

+
(

47 719 438 600 C̃2 B̃

7
+ 3148 585 h̃2

x B̃

126

− 4756 974 425 B̃2

27
− 4034 825 367 815 B̃3

567

+ 569 061 400 C̃2

7
+ 2042 975 Ẽ2

63
− 3148 585 h̃2

z B̃

63

+ 4807 h̃2
x Ẽ

6
− 24 515 700 Ẽ2 C̃

7
+ 4807 h̃2

x

18

− 266 812 535 B̃

189
− 2042 975

567
+ 178 556 015 Ẽ2 B̃

63

− 4807 h̃2
z

9

)
(Dβ)2 +

(
98 673 289 Ẽ4

252

6 The reader is welcome to request from the authors the lengthy expansion up
to higher orders.

− 7400 778 485 375 B̃3

567
+ 98 673 289 Ẽ2

378

+ 17 217 417 625 h̃2
x B̃2

378
+ 98 673 289

2268

− 4756 974 425 h̃2
z B̃2

54
+ 45 316 900 h̃2

z C̃2

+ 2431 h̃2
z h̃2

x

18
+ 2431 h̃4

x

36
+ 79 039 355 548 500 C̃4

49

− 17 396 489 300 Ẽ2 C̃2

7
+ 601 749 000 Ẽ2 C̃

7

+ 7100 638 200 Ẽ2 C̃ B̃ + 19 732 735 h̃2
x B̃

27

+ 12 257 850 h̃2
x Ẽ C̃

7
− 1442 100 h̃2

x Ẽ B̃

+ 204 911 349 835 900 C̃2 B̃2

21
− 1004 663 h̃2

x Ẽ2

126

− 665 362 842 293 105 B̃4

324
+ 2431 h̃4

z

36
− 2042 975 h̃2

z

378

+ 6447 762 385 B̃

567
+ 2110 273 h̃2

z Ẽ2

126

+ 20 677 338 62 095 B̃2

2646
+ 22 339 848 420 200 C̃2 B̃

147

+ 18 495 21 655 Ẽ2 B̃

27
− 266 812 535 h̃2

z B̃

189

− 115 368 h̃2
x Ẽ

7
+ 10 71 961 h̃2

x

378
− 138 179 400 h̃2

x C̃2

7

+ 1651 467 646 105 Ẽ2 B̃2

378

+ 12 690 960 700 C̃2

21

)
(Dβ)3 + O((Dβ)4), (A.1)

where we use the notation: B̃ ≡ B/D, C̃ ≡ C/D, Ẽ ≡ E/D,
h̃x ≡ hx/D and h̃z ≡ hz/D and Wquant(Dβ) = Wquant(β)/D.

The quantum S = 10 tetrahedral symmetry case can be
obtained from (A.1) by setting E = 0.

Since (A.1) is a function of the arbitrary parameters
in (12), we are allowed to derive the β expansion of the
following one-site thermal averages: 〈S2

z 〉, 〈S4
z 〉, 〈S2

x − S2
y〉,

the x and z components of the magnetization (Mi , i ∈ {x, z})
and the elements of the magnetic susceptibility tensor χi j ,
i, j = ∈ {x, z}.

The S = 10 case with external magnetic field on the
yz plane is obtained from the expansion (A.1) by replacing
E → −E and hx → hy .

Appendix B. The β expansion of the HFE of the
classical Mn12-ac model

In the classical version of the S = 10 Mn12-ac molecule we
have a classical spin with norm ‖S‖ = √

S(S + 1) = √
110

7
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with components

Sx = √
110 sin(θ) cos(φ),

Sy = √
110 sin(θ) sin(φ) and Sz = √

110 cos(θ),

(B.1)
with θ ∈ [0, π] and φ ∈ [0, 2π]. The relations (B.1) are
replaced in Hamiltonian (12) in order to derive its classical
version H class(θ, φ). The results derived in section 2 are also
valid for the classical one-site models. The functions H (n)

1,1 of
the classical model are

H (n)
1,1 = 1

4π

1

n!
∫ π

0
sin(θ) dθ

∫ 2π

0
dφ

[
H class

]n
,

n = 1, 2, 3, . . . . (B.2)

A useful formula for evaluating this integral is [14]

I (m,n)
θ ≡

∫ π

0
dθ (sin θ)m(cos θ)n

= 1

4
(1 + (−1)m)(1 + (−1)n)


(m+1
2 )
( n+1

2 )


(m+n+2
2 )

+ 1

2
(1 − (−1)m)

(1 + (−1)n)

n + 1


( n+3
2 )
(m+1

2 )


(m+n+2
2 )

. (B.3)

Replacing (B.2) for n = 1, 2, 3, . . . , 20 in equation (11)
yields the high-temperature expansion of the classical HFE up
to order (Dβ)19. In what follows we present this expansion
up to order (Dβ)3 for arbitrary values of the parameter in the
classical Hamiltonian, that is7

Wclass(Dβ) = −ln(4 π) (Dβ)−1 +
(

−2420 B̃ − 110

3

)

+
(

− 46 851 200 B̃2

9
− 4840 Ẽ2

3
− 4840

9
− 55 h̃2

x

3

− 234 256 000 C̃2

63
− 55 h̃2

z

3
− 2129 600 B̃

21

)
(Dβ)

+
(

2420 h̃2
x

9
−907 039 232 000 B̃3

117
−35 606 912 000 B̃2

189

+ 2420 h̃2
x Ẽ

3
+ 18 740 480 000 C̃2

189
− 234 256 000 Ẽ2 C̃

63

− 2129 600

567
+ 532 400 h̃2

x B̃

21
+ 6596 648 960 000 C̃2 B̃

819

+ 2129 600 Ẽ2

63
− 1064 800 h̃2

z B̃

21
− 93 702 400 B̃

63

− 4840 h̃2
z

9
+ 187 404 800 Ẽ2 B̃

63

)
(Dβ)2

+
(

1874 048 000 B̃

189
+ 23 425 600 Ẽ4

63
− 1064 800 h̃2

z

189

+ 412 290 560 000 C̃2

1053
+ 532 400 h̃2

x

189

+ 21 727 712 512 000 B̃2

515 97
+ 46 851 200 Ẽ2

189

7 The reader is welcome to request from the authors the lengthy expansion up
to higher orders.

+ 8901 728 000 h̃2
x B̃2

189
− 1064 800 h̃2

x Ẽ

63

− 17 803 456 000 h̃2
z B̃2

189
+ 9370 240 000 h̃2

z C̃2

189

+ 1210 h̃2
z h̃2

x

9
+ 605 h̃4

x

9
+ 563 724 882 688 000 000 C̃4

877 149

− 8451 956 480 000 Ẽ2 C̃2

2457
+ 6596 648 960 000 Ẽ2 C̃ B̃

819

+ 117 128 000 h̃2
x Ẽ C̃

63
− 93 702 400 h̃2

x Ẽ B̃

63

+ 1249 174 430 310 400 000 C̃2 B̃2

125 307
− 532 400 h̃2

x Ẽ2

63

− 63 656 013 301 760 000 B̃4

179 01
+ 605 h̃4

z

9

−93 702 400 h̃2
z B̃

63
− 18 140 784 640 000 B̃3

351

+ 181 407 846 400 000 C̃2 B̃

1323
+ 1064 800 h̃2

z Ẽ2

63

+ 18 740 480 000 Ẽ2 C̃

189
+ 1874 048 000 Ẽ2 B̃

27

+ 46 851 200 h̃2
x B̃

63
− 4685 120 000 h̃2

x C̃2

189

+ 11 173 074 176 000 Ẽ2 B̃2

2457
+ 23 425 600

567

)
(Dβ)3

+ O((Dβ)4) (B.4)

where we keep the notation: B̃ ≡ B/D, C̃ ≡ C/D, Ẽ ≡
E/D, h̃x ≡ hx/D and h̃z ≡ hz/D, and Wclass(Dβ) =
Wclass(β)/D.

The classical case with external magnetic field in the yz
plane is obtained by replacing E → −E and hx → hy

in (B.4).
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